Switched-angle spinning applied to bicelles containing phospholipid-associated peptides.

نویسندگان

  • Giorgia Zandomeneghi
  • Philip T F Williamson
  • Andreas Hunkeler
  • Beat H Meier
چکیده

In a model study, the proton NMR spectrum of the opioid pentapeptide leucine-enkephalin associated with bicelles is investigated. The spectral resolution for a static sample is limited due to the large number of anisotropic interactions, in particular strong proton-proton couplings, but resolution is greatly improved by magic-angle sample spinning. Here we present two-dimensional switched-angle spinning NMR experiments, which correlate the high-resolution spectrum of the membrane-bound peptide under magic-angle spinning with its anisotropic spectrum, leading to well-resolved spectra. The two-dimensional spectrum allows the exploitation of the high resolution of the isotropic spectrum, while retaining the structural information imparted by the anisotropic interactions in the static spectrum. Furthermore, switched-angle spinning techniques are demonstrated that allow one to record the proton spectrum of ordered bicellar phases as a function of the angle between the rotor axis and the magnetic field direction, thereby scaling the dipolar interactions by a predefined factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manipulation of the director in bicellar mesophases by sample spinning: a new tool for NMR spectroscopy.

It is shown that bicellar nematic liquid-crystalline phases can be oriented with the director (the normal to the bicellar plane) at an arbitrary angle to the applied magnetic field by sample rotation around one axis (variable-angle sample spinning) or around two axes successively (switched-angle spinning). This promises to open novel possibilities for NMR studies of bicelles and proteins incorp...

متن کامل

Sign determination of dipolar couplings in field-oriented bicelles by variable angle sample spinning (VASS).

Residual dipolar couplings are being increasingly used as structural constraints for NMR studies of biomolecules. A problem arises when dipolar coupling contributions are larger than scalar contributions for a given spin pair, as is commonly observed in solid state NMR studies, in that signs of dipolar couplings cannot easily be determined. Here the sign ambiguities of dipolar couplings in fiel...

متن کامل

Measurement of scaled residual dipolar couplings in proteins using variable-angle sample spinning.

NMR spectra of ubiquitin in the presence of bicelles at a concentration of 25% w/v have been recorded under sample spinning conditions for different angles of rotation. For an axis of rotation equal to the magic angle, the (1)H/(15)N HSQC recorded without any (1)H decoupling in the indirect dimension corresponds to the classical spectrum obtained on a protein in an isotropic solution and allows...

متن کامل

NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation.

Model-membrane systems composed of liquid-crystalline bicellar phases can be uniaxially oriented with respect to a magnetic field, thereby facilitating structural and dynamics studies of membrane-associated proteins. Here we quantitatively characterize a method that allows the manipulation of the direction of this uniaxial orientation. Bicelles formed from DMPC/DHPC are examined by (31)P NMR un...

متن کامل

Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules.

Several complementary physical techniques have been used to characterize the aggregate structures formed in solutions containing dimyristoylphosphatidylcholine (DMPC)/dihexanoylphosphatidylcholine (DHPC) at ratios of < or =0.5 and to establish their morphology and lipid organization as that of bicelles. (31)P NMR studies showed that the DMPC and DHPC components were highly segregated over a wid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomolecular NMR

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2003